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Introduction

I Extreme Value Theory (EVT) concerns the mathematical modelling of
extreme events. A distinguishing factor of EVT is that the focus of the
analysis is on the tails of a distribution. It allows one to make inference
about extreme events occurring over a time period into the future.
Accounting for multiple variables working together as predictors of extreme
events provides a more accurate representation of how extreme events are
ultimately caused from a statistical perspective.

I Multivariate EVT (MEVT) is used in this study to jointly model the
extremes of weather variables. Specifically, to model pairwise combinations
of rainfall, temperature and wind speed maxima from five weather stations
across the Western Cape province in South Africa.

Methodology

I Multivariate analysis is split into two parts which look at the marginal
distributions and dependence structure separately.

I Marginal analysis is completed using univariate techniques namely point
process and threshold excess approaches through asymptotically dependent
models.

. Marginal distributions are transformed to a standardised distribution so
that the data follows the multivariate extreme value distribution. Standard
Fréchet margins are used in this study.

I Component Wise: Defining (X1,Y1), (X2,Y2), ..., (Xn,Yn) as an independent
sequence of random vectors (standard Fréchet margins) with a distribution function
F (x, y), the limiting joint distribution is
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x, y > 0, where G is a non-degenerate distribution function and H is a distribution
function on [0,1] which satisfies the following mean constraint∫ 1
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I Threshold Excess: Defining (x1, y1), (x2, y2), ..., (xn, yn) as an independent
sequence of random observations (standard Fréchet margins) with a distribution function
F (x, y), the marginals have a distribution that is as follows
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where ux and uy are suitable thresholds chosen using Mean Residual Life (MRL) plots.
The bivariate case G(x, y) follows on from (2).

I Point Process: Defining (x1, y1), (x2, y2), ..., (xn, yn) as an independent sequence of
random observations (standard Fréchet margins) with a distribution function F (x, y), the
marginals have a distribution that follows (1).

The point process sequence Nn is of the form
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Transforming to pseudo-polar coordinates where

r = x + y and w =
x

r
(6)

the intensity function of the point process sequence is defined as

λ(r ,w) = 2
dH(w)

r2
(7)

which relates back to equation (2).

I Parametric models are used to capture dependence structure between the
variables.
. The simplest model is the logistic family which is symmetric:

G(x, y) = exp{−(x−1/α + y−1/α)α} x > 0, y > 0 (8)
for α ∈ (0, 1). α is a measure of the dependence strength which represents
independence (α = 1) and dependence (α→ 0).

I Parameter estimates are calculated using maximum likelihood estimation.
I Diagnostic measures include AIC, coefficients of tail dependence and

extremal dependence.
I Component-wise maxima, threshold excess and point process models are

explored and applied to weather data. The performance of the models are
compared to each other in R using the evd package.
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Data

I Weather variables are daily
maximum rainfall (mm), daily
maximum temperature (0C) and
daily maximum wind speed
(m/s) for five stations across
the Western Cape province from
1965 to 2015.

I Data is broken up into the four
seasons for stationarity:
Summer (December - February),
Autumn (March - May), Winter
(June - August) and Spring
(September - November).

Figure 1: Map of the five stations across the Western Cape

province.

I The five stations are Cape Town International Airport, George Airport,
Langebaanweg, Plettenberg Bay and Vredendal. The results for Cape Town
International Airport will be focused on for the purposes of this poster.

Results

Figure 2 shows the transition of the raw data (wind speed and temperature
maxima) to standard Fréchet margins and then plotted on log scale for
Cape Town International Airport during spring.

15 20 25 30 35 40

0
5

10
15

20

Spring

Maximum Temperature (°C)

M
ax

im
um

 W
in

d 
S

pe
ed

 (
m

/s
)

0 1000 2000 3000 4000

0
10

00
20

00
30

00
40

00

Spring

Maximum Temperature (°C)

M
ax

im
um

 W
in

d 
S

pe
ed

 (
m

/s
)

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.

0

Spring

Maximum Temperature (°C)

M
ax

im
um

 W
in

d 
S

pe
ed

 (
m

/s
)

0.1 1.0 10.0 100.0 1000.0

0.
1

1.
0

10
.0

10
0.

0

Spring

Maximum Temperature (°C)

M
ax

im
um

 W
in

d 
S

pe
ed

 (
m

/s
)

Figure 2: Top left: original data, Top right: transformed data , Bottom left: transformed data on log scale, Bottom

right: transformed data on log scale with point process (- - -) and threshold excess thresholds (—).

Table 1: Parameter Estimates for Temperature and Wind Speed Maxima using the log model.

Season Component-Wise Threshold Excesses Point Process

α Std error α Std error α Std error

Summer 0.965 (0.067) 0.987 (0.009) 0.784 (0.008)
Autumn 0.803 (0.101) 0.915 (0.016) 0.752 (0.007)
Winter 0.969 (0.101) 0.877 (0.025) 0.801 (0.008)
Spring 0.999 (2 x 10−6) 0.962 (0.015) 0.754 (0.007)

I The results from the component-wise and threshold excess show α
estimates close to 1 which indicates weak dependence between the variables
at a single station throughout the seasons.

I The point process dependence estimates tend further away from 1 but still
indicates weak dependence between the variables at a single station
throughout the seasons. The difference in dependence estimates seen from
the point process approach can be attributed to the curved threshold
boundary which allows for more observations to analysed.

Conclusions & Future Work

I The component-wise model is wasteful of data and does not perform well in
capturing the dependence between the weather extremes.

I The threshold excess and point process models are better performing
models for jointly capturing the relationship between the maxima of
different weather variables at a single location. However, asymptotically
independent models seem to be more appropriate for this data.

I Extending to greater than two variables at a single location and including
different dependence models.

I Exploring asymptotically independent models and non-parametric methods
to model multivariate extremes.
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