
Chapter 1

Table of contents

Overview . 1
Outline of the course notes . 2
Data and the data matrix . 4
Standardisation of data . 8

Mathematical notation 13
Introduction to Singular Value Decomposition (SVD) 15

Mathematical Definition . 15
Dimension Reduction . 15

Least Squares Approximation . 16
R Programming Exercise . 16
A word of caution on practical data analysis . 18

Overview

Reading

Course Notes - Chapter Introduction

Most quantitative research in the business and social sciences makes use of some kind of mul-
tivariate analysis. Research that considers only one variable at a time (a univariate analysis)
can provide useful information – for example, about the average rate of inflation over time,
the variability of a particular share’s return, or the relative proportion of the population that
hold a certain opinion – but it is usually in the consideration of relationships between two or
more variables that the most interesting and useful information is to be found. For example,
what other variables are related to increases in the inflation rate or the rise in the price of
a particular share? Is it interest rates? Foreign exchange rates? And what causes people to
prefer one opinion over another? Is it their education level? Income? The newspaper they

1

read? Simply put, any analysis that considers the relationship between two or more variables
is a multivariate analysis.

The aim of this course and these notes is to cover some of the more popular methods for
exploring multivariate data. The perspective that we will take when looking at these techniques
will be to use the minimum amount of mathematics necessary for a solid understanding of the
techniques and their interpretation. However, this does not mean “no mathematics”! Over the
past twenty or so years, modern statistical software packages have made it possible to run all
of the techniques that we’ll cover in this course with a few clicks of a mouse, without knowing
a single bit of mathematics and almost nothing about how the techniques themselves work.
Clicking a mouse might give you results, but it is very difficult to know whether these results
are reliable unless you know something about the underlying technique and what potential
pitfalls exist. All statistical techniques, and particularly the multivariate ones, make some
assumptions about the type and amount of data that should be collected and the aims of the
researcher. If these are ignored, the results may not just be incorrect but misleading. In this
case it would be better to put the output of an analysis in a rubbish bin than into a report or
on a manager’s desk. To get this understanding, a certain amount of mathematics is needed.

Having said that, the focus of the course is on the practical use and interpretation of the
techniques in the analysis of real-world business and social research. The course is aimed
at students who are specialising in some field of business or social science but who are not
specialising in statistics, and so the techniques are illustrated mostly using real-world numerical
examples rather than using mathematical arguments. The kind of statistics and mathematics
that will used includes the following topics that have been covered in previous courses:

• Basic descriptive statistics (means, variances, absolute and relative frequencies, correla-
tion)

• Hypothesis testing (𝑧-test, 𝑡-test, 𝐹 -test, 𝜒2-test of association)

• One-way analysis of variance and multiple linear regression

• Two-way crosstables (contingency tables), and their analysis using the 𝜒2 test of associ-
ation

• Use of basic mathematical notation (summation’ notation, vectors, matrices)

If you are unfamiliar with any of this material, it is important to go back and revise in the
first few weeks of the course.

Outline of the course notes

Apart from this general introduction chapter, the course is divided into two parts of roughly
equal size. In the first part, we look at techniques that a primarily ways of summarising large
amounts of data and extracting its key meaning. Summarisation is concerned with taking a

2

large amount of data and condensing it into a simpler form that is easier to read and understand.
Everyone is familiar with the idea of a “summary” section at the back of a textbook chapter,
which gives the key ideas contained in the chapter. You can think of the techniques contained
in the first part of the course as a summary section for numbers. We look at three techniques
in Part I: correspondence analysis, factor analysis, and cluster analysis. Importantly, the
techniques in Part I do not attempt to predict anything, nor explain any dependent variable.
In fact, there is no dependent variable for any of the techniques in part one. This is left
until Part II, which deals with what we will call “predictive” techniques. These techniques
attempt to use one set of variables (the independent or predictor variables) to predict one of
more other variables (the dependent or outcome variables). Multiple regression, which you
would have covered in previous courses, is a typical example of a predictive technique, which
we will briefly look at in this course in order to introduce other predictive models. The other
techniques we will look at in Part II are: analysis of variance and covariance, discriminant
analysis, classification trees, and structural equation modelling. Thus, over the course of the
semester we aim to cover nine techniques which cover the bulk of multivariate analyses done
in business- and social-research industries today.

Each technique is illustrated with a detailed example, with more concise descriptions of further
examples given in the final part of each chapter, called “Further examples”. These are intended
as a basis for discussion in class or for self-study. For the practical implementation of the
methods studied in this course, the R software package will be used. The R system is an open-
source software project for analysing data and constructing graphics. It provides a general
computer language for performing tasks like organizing data, statistical analyses, simulation
studies, model fitting, building of complex graphics and many more. The R language was
introduced in 1996, but in the first decade of the twenty-first century interest in R has exceeded
all possible expectations. Apart from a well maintained core system with new releases every
few months there are currently literally thousands of researchers contributing add-on packages
on cutting-edge developments in statistics and data analysis. R is available in the Scilabs on
campus. If you would like to install R on your own laptop / PC, go to the website http://
www.R-project.org. To download R to your own computer: Navigate to …./bin/windows/base
and save the file R-x.0.x.-win.exe on your computer. Click this file to start the installation
procedure and select the defaults unless you have a good reason not to do so. The core R
system that is installed includes several packages. Apart from these installed packages several
thousands of dedicated contributed packages are available to be downloaded by users in need
of specific analyses. Many users of R prefer working with RStudio. This is a free and open
source integrated development environment for R which works with the standard version of
R available from CRAN (Comprehensive R Archive Network available at the website address
given above). It can be downloaded from the RStudio home page www.rstudio.com to be run
from your desktop (Windows, Mac or Linux). In this course we will be using the RStudio
environment.

Before diving into the techniques, it is necessary to make sure that everyone is on the same
mathematical footing, at least as far as basics are concerned. The remainder of this section
revises some of the most important ideas behind matrices and the data filling them, and

3

http://www.R-project.org
http://www.R-project.org
www.rstudio.com

describes how mathematical notation will be used in the remainder of the notes. It may be
useful to have a quick read through these sections now to see how familiar you are with the
content, and then to refer back to them as you read through the chapters to come.

Data and the data matrix

In earlier mathematics courses, you would have learned that a matrix is simply a rectangular
or square arrangement of numbers. For example,

X = [10 3 49 23
9 20 94 1]

is a matrix. Specifically it is a matrix with dimension 2 × 4, or a “2 × 4 matrix” for short,
because it has two rows and four columns. A vector is a special case of a matrix with only one
row (called a row vector) or one column (called a column vector). Of course, any number on
its own is also a special case of a matrix; one with one row and one column. This is called a
scalar.

If we want to talk generally about matrices, without referring to specific number like in the
matrix above, it is common to use 𝑥’s in place of the numbers in the matrix e.g.

X = [𝑥11 𝑥12 𝑥13 𝑥14
𝑥21 𝑥22 𝑥23 𝑥24

]

The whole matrix is usually denoted with a bold capital i.e. X. It is important to realise that
each 𝑥 in the matrix above is simply a placeholder for a particular value to come. The first
matrix (with the numbers) can only refer to one particular matrix, but the second one (with
the 𝑥’s) can be used to refer to any 2 × 4 matrix. Also, we can refer to any position in the X
matrix using subscript notation.

Take 𝑥23 for example. The “23” is actually two subscripts put together (a “2” and a “3”).
The first subscript (the “2”) indicates what row the particular 𝑥 we are interested in is in (the
second row), and the second subscript (the “3”) indicates what column the 𝑥 is in (the third
column). In the first matrix above, 𝑥23 = 94. Of course, if we have a vector, then there will
be only one subscript, because all elements are in the same row (or column if it is a column
vector). In fact, there is nothing stopping us having more than two subscripts too (for matrices
of more than two dimensions), but we will not need to go this extra step for this course.

Why are we going over all this? Suppose that we have given out a survey and collected
responses from 6 people on 5 questions. We can arrange these responses in the format of a
table, as shown below:

4

X =

⎡
⎢⎢⎢⎢⎢
⎣

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35
𝑥41 𝑥42 𝑥43 𝑥44 𝑥45
𝑥51 𝑥52 𝑥53 𝑥54 𝑥55
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65

⎤
⎥⎥⎥⎥⎥
⎦

We will call a table or matrix that is set up like this to contain data collected from a survey or
some other piece of research a data table or a data matrix. There is not real difference between
it an the other matrices we were talking about earlier, just a special application. The things
that we are collecting data from (which could be people, shares, countries, animal species,
songs … anything you can collect data on) are called cases or responses. These appear as
separate rows in the data matrix. The pieces of information that we use to describe each case
are called variables or attributes and these appear in the columns of the data matrix. The 𝑥’s,
remember, are simply placeholders for values to come. Specifically, the values to come may be
numbers, or they may be words. It is perfectly allowable for the first column of 𝑥’s to be, for
example, the first names of each person, e.g. 𝑥11 = Iris. Of course, this will affect the type of
analysis we can do later on that variable (for example, it wouldn’t make sense to calculate a
mean’ first name).

R makes a distinction between matrices of numeric values and data frames containing all
different types of data.

load("data/survey.data.RData")
survey.data

Person Q1 Q2 Q3 Q4 Q5
1 John 6 639020 52.82732 21.91701 16
2 Sally 1 153860 47.71114 17.41023 14
3 Jane 4 138180 51.62570 21.96218 16
4 Tom 2 101360 48.69179 18.88657 13
5 Rick 2 564000 48.81529 19.48836 11
6 Amy 3 328830 49.02871 21.84143 9

Above we have a data frame called survey.data. We can ask R whether survey.data is a data
frame with the function is.data.frame():

is.data.frame(survey.data)

[1] TRUE

5

We can ask R whether survey.data is a matrix with the function is.matrix().

is.matrix(survey.data)

[1] FALSE

We can convert a data frame to a matrix with the function as.matrix(). Similarly, a matrix
can be converted into a data frame with the function as.data.frame().

X <- as.matrix(survey.data[,-1])
X

Q1 Q2 Q3 Q4 Q5
[1,] 6 639020 52.82732 21.91701 16
[2,] 1 153860 47.71114 17.41023 14
[3,] 4 138180 51.62570 21.96218 16
[4,] 2 101360 48.69179 18.88657 13
[5,] 2 564000 48.81529 19.48836 11
[6,] 3 328830 49.02871 21.84143 9

Above we have the matrix called X.

is.data.frame(X)

[1] FALSE

is.matrix(X)

[1] TRUE

Notice that when the matrix X was created from the data frame survey.data, the first column,
containing non-numeric values were excluded. Has it not been excluded, all entries in the
matrix will be converted to text, even the numeric values.

as.matrix(survey.data)

6

Person Q1 Q2 Q3 Q4 Q5
[1,] "John" "6" "639020" "52.82732" "21.91701" "16"
[2,] "Sally" "1" "153860" "47.71114" "17.41023" "14"
[3,] "Jane" "4" "138180" "51.62570" "21.96218" "16"
[4,] "Tom" "2" "101360" "48.69179" "18.88657" "13"
[5,] "Rick" "2" "564000" "48.81529" "19.48836" "11"
[6,] "Amy" "3" "328830" "49.02871" "21.84143" " 9"

At this point it is probably worth spending a little time discussing different data types. There
are two main types of data that we need to distinguish between: numerical variables, and
categorical variables.

Important

Numerical variables
Numerical variables are measurements that can be recorded on a quantitative scale
where the intervals between two values on the scale have some meaning. Essentially, this
means that (a) the variable contains numbers rather than words or symbols, (b) the gaps
between two numbers have some actual meaning. Examples of numerical variables are
height, age, and number of children.
Categorical variables are measurements of individuals in terms of groups or categories
where the gap between categories have no intrinsic meaning. A typical example of a
categorical variable is race, where the gap betweenblack’ and white’ has no proper inter-
pretation, language, political affiliation, country of birth, and many other demographic
variables.

It is vitally important to be able to distinguish between different data types because to a large
extent these dictate what statistical techniques can be used. For example, it makes good sense
to calculate the mean of a continuous variable but (as we have seen) no sense at all to calculate
the mean of a categorical variable. The same idea extends to multivariate analysis. Some of
the techniques we will look at work on correlation coefficients, which cannot be calculated for
strictly categorical variables like race.

One further point on data types: some textbooks further divide numerical variables into
ratio-scaled numerical variables and interval-scaled numerical variables; and divide categorical
variables into ordinal categorical variables and nominal categorical variables. For the purposes
of deciding which multivariate technique to use, this is an unnecessary detail and it is sufficient
to know whether a variable is numerical or categorical. For the sake of completeness these
additional terms are briefly described below. Ratio-scaled numerical variables are those that
have a natural zero point (like age, height, and income). These are called “ratio-scaled” because
the are not sensitive to units of measurement (if I am three times your height in meters I am
also three times your height if it is measured in centimeters). This means that ratio-scaled
variables have an arbitrary scale. Interval-scaled variables are still numeric but do not have a

7

natural zero point (IQ, temperature in degrees Celcius, and most Likert-type rating scales are
of this type). Interval-scaled variables therefore have an arbitrary zero point and an arbitrary
scale. Ordinal categorical variables are those where the categories can be ordered even if the
gaps between them cannot be interpreted (such as level of education, which can be ordered:
none, primary-school, high-school, undergraduate degree, postgraduate degree). In contrast,
the categories of a nominal categorical variable cannot be ordered in any meaningful way
(such as race or language group). It is also common to further classify numerical variables as
continuous if they can take on any intermediate value on the scale (e.g. height) or discrete if
the values a variable can take on are limited in some way (e.g. number of children).

Standardisation of data

When analysing numerical data, it often happens that different variables are measured on
scales of very different sizes. For example, in the above matrix the first question might ask
one how many children one has and the second question might ask for one’s income in Rands.
Clearly, the scale of possible values for the first question (between 0 and perhaps 15) is much
smaller than for the second (between 0 and perhaps several million Rand). For reasons that
will become clearer later on, this can cause enormous problems in some multivariate techniques
by giving too much influence to the variables measured on larger scales. In order to put all
variables on an equal footing, it is often necessary to standardise the data. Because several
techniques require standardised data we consider it in this introductory chapter, but it is
important to realise that not all the techniques need the data to be standardised. Moreover,
in cases where all numerical variables are measured on the same scale (e.g.all on a 1 to 5 Likert
rating scale) there will be no need to standardise either.

There are several different ways to standardise data, but the only one that we will use is to
standardise the data so that each variable has a mean of zero and a standard deviation of one.
In order to do this we carry out the following steps:

1. Calculate the mean and standard deviation of each variable in the data matrix (i.e. these
are the column means and the column standard deviations)

2. Subtract each element in the data matrix by its column mean.

3. Divide the resulting ”element minus mean” by its column standard deviation

We will illustrate the standardisation of a data matrix using the following example. Suppose
that information on three variables (income, number of children, and age) has been collected
from five individuals. The data is contained in the following table.

8

Table 1: Unstandardized Data with Summary Statistics

Person Income No Children Age
𝑎 10000 0 40
𝑏 0 3 23
𝑐 300000 2 32
𝑑 150000 2 35
𝑒 1000000 1 58
̄𝑥 292000 1.6 37.6

𝑠 414210 1.140 12.973

where we use the usual mathematical notation ̄𝑥 to denote the mean and 𝑠 to denote the stan-
dard deviation. Note that the variables are measured on very different scales. To standardise
the data, we simply follow the steps above. For example, the standardised income of person 𝑎
is given by

10 000 − 292 000
414 210 = −0.681

to three decimal places. Similarly the standardised number of children for person 𝑑 is given by
(2 − 1.6)/1.140 = 0.351. You can check for yourself that the new column means and standard
deviations are all zero and one respectively. Since the mean of all the variables is zero, it is
possible to see at a glance which observations are below average (those that are negative) and
which are above average (those that are positive).

9

Standardised data

a -0.681 -1.403 0.185

b -0.705 1.228 -1.125

c 0.019 0.351 -0.432

d -0.343 0.351 -0.200

e 1.709 -0.526 1.572

Person ▲
▼

Income ▲
▼ N.Children ▲

▼ Age ▲
▼

10

The relevance of standardising data may not seem clear to you at the moment. Just bear
this section in mind as you continue through the notes and refer back to it when the issue of
standardisation reappears.

X <- matrix (c(10000,0,300000,150000,1000000,0,3,2,2,1,40,23,32,35,58), ncol=3,
dimnames=list(c("a","b","c","d","e"),

c("Income","No Children","Age")))

In R we can create a matrix with the matrix() function. The values in the matrix are
concatenated with the operator c(). Notice that the values needs to be entered column wise
by default. The names for the two dimensions are specified by dimnames=list(“row names”,
“column names”). Notice below that the row names appear to the left.

They are text, but are not part of the CONTENT of the matrix. The matrix X:5 × 3 contains
only numeric values.

X

Income No Children Age
a 10000 0 40
b 0 3 23
c 300000 2 32
d 150000 2 35
e 1000000 1 58

To calculate the means we apply to X, column wise (indicated by 2; 1 for row wise) the function
mean().

xbar <- apply(X,2,mean)
xbar

Income No Children Age
292000.0 1.6 37.6

Similarly, the function sd() is applied to each column to calculate the standard deviations.

s <- apply(X,2,sd)
s

Income No Children Age
4.142101e+05 1.140175e+00 1.297305e+01

11

Any numeric calculations can be performed by simply typing the expression at the R command
prompt “>”.

(10000-292000)/414210

[1] -0.6808141

R has the ability to operate on a whole vector (or matrix) at once. Here the standardised
values for Age is calculated by subtracting the mean from the values in column 2 and dividing
resulting “column minus mean” by the standard deviation.

(X[,2]-1.6)/1.14

a b c d e
-1.4035088 1.2280702 0.3508772 0.3508772 -0.5263158

The expressions above is simply for illustration purposes. The function scale() performs all
the standardisation calculations in a single step. The output is again a matrix of size 5 ×
3, but additional attributes are provided: first the mean called “scaled:center”, then the
standard deviations called “scaled:scale”.

scale(X)

Income No Children Age
a -0.68081393 -1.4032928 0.1849989
b -0.70495627 1.2278812 -1.1254101
c 0.01931387 0.3508232 -0.4316641
d -0.34282120 0.3508232 -0.2004155
e 1.70927752 -0.5262348 1.5724908
attr(,"scaled:center")

Income No Children Age
292000.0 1.6 37.6

attr(,"scaled:scale")
Income No Children Age

4.142101e+05 1.140175e+00 1.297305e+01

12

Mathematical notation

Let us begin by taking another look at the general X matrix from earlier in the chapter.

X =

⎡
⎢⎢⎢⎢⎢
⎣

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35
𝑥41 𝑥42 𝑥43 𝑥44 𝑥45
𝑥51 𝑥52 𝑥53 𝑥54 𝑥55
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65

⎤
⎥⎥⎥⎥⎥
⎦

We have already discussed the use of subscript notation, using the example of 𝑥23 – where the
first subscript that the 𝑥 we are interested in is in the second row and the third column of the
data matrix. We can make this one step more general by referring to a general subscript 𝑖 for
the rows and 𝑗 for the columns, to give 𝑥𝑖𝑗. In the same way that the 𝑥’s are just placeholders
for value to come, so is 𝑖 and so is 𝑗. Thus, we can insert any value from 1 to 6 into 𝑖 and any
value from 1 to 5 into 𝑗, and refer to a specific element of X.

This becomes important because we don’t want to have to write out the whole matrix every
time we want to do something with X. The general 𝑖 and 𝑗 subscripts allow us to be much
more concise. For example, suppose that the 𝑥’s are scores on 5 different tests. The score
achieved by student 𝑖 on test 𝑗 is given by 𝑥𝑖𝑗. Suppose now that we want to find student 3’s
average mark, which we label as ̄𝑥3. In order to do this we need to add up all 5 test scores
and divide by 5. We could write

̄𝑥3 = 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35
5

or we could write

̄𝑥3 = 1
5

5
∑
𝑗=1

𝑥3𝑗

The summation sign (Σ) indicates that we add up all the terms following the sign, by letting
𝑗 take each of the values in turn between the “limits of summation” (which are 1 and 5
respectively). In this case, it does not save much time or space to use summation notation,
but in some cases it does. For example, if we now want refer to the average test score of any of
the individuals in our data set, we have two choices: either use the “full” notation and write

13

out all the averages

̄𝑥1 = (𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15)/5
̄𝑥2 = (𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25)/5
̄𝑥3 = (𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 + 𝑥35)/5
̄𝑥4 = (𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 + 𝑥45)/5
̄𝑥5 = (𝑥51 + 𝑥52 + 𝑥53 + 𝑥54 + 𝑥55)/5
̄𝑥6 = (𝑥61 + 𝑥62 + 𝑥63 + 𝑥64 + 𝑥65)/5

or use the other general subscript 𝑖 and write the average test score of person 𝑖 is given by

̄𝑥𝑖 = 1
5

5
∑
𝑗=1

𝑥𝑖𝑗 (𝑖 = 1, … , 6)

where the (𝑖 = 1, … , 6) part indicates that 𝑖 can take on any value from 1 to 6. The com-
pactness of the summation notation is clear to see. Now, suppose that we want to weight the
different test scores differently. This is typically what happens in the calculation of a year
mark. Suppose that the 𝑥’s are marks are 5 class tests, which are count 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5
towards the final mark. Note that we have introduced another variable here, 𝑤𝑗, to denote
the weight attached to test 𝑗. Then the year mark obtained by student 𝑖 is given by

̄𝑥𝑖 = 𝑤1𝑥𝑖1 + 𝑤2𝑥𝑖2 + 𝑤3𝑥𝑖3 + 𝑤4𝑥𝑖4 + 𝑤5𝑥𝑖5
5 (𝑖 = 1, … , 6)

or we could just write

̄𝑥𝑖 = 1
5

5
∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 (𝑖 = 1, … , 6)

Note that the 𝑤’s only have a 𝑗 subscript because they do not differ over students (the weighting
is the same for all students) and so do not need an 𝑖 subscript. Suppose that the weightings
did differ over students (say because the weights needed to be adjusted if students miss a test
for medical reasons). Then the 𝑤’s would be able to differ over students, we would need to
include a subscript 𝑖, and we would have an average mark given by

̄𝑥𝑖 = 1
5

5
∑
𝑗=1

𝑤𝑖𝑗𝑥𝑖𝑗 (𝑖 = 1, … , 6)

Try writing out the average year mark for student 4 as a practice exercise. Finally, suppose
that we want to work out a class average, labelled 𝐶. For this we need to add together each
student’s average mark ̄𝑥𝑖 and then divide by the number of students in the class, 6. This can
be written as

𝐶 =
6

∑
𝑖=1

̄𝑥𝑖 = 1
6

6
∑
𝑖=1

1
5

5
∑
𝑗=1

𝑤𝑖𝑗𝑥𝑖𝑗 = 1
30

6
∑
𝑖=1

5
∑
𝑗=1

𝑤𝑖𝑗𝑥𝑖𝑗 (𝑖 = 1, … , 6)

14

Once again, try writing this out in full as an exercise and to see the usefulness of the summarised
notation!

Introduction to Singular Value Decomposition (SVD)

There is one result from matrix algebra that we will use extensively in the methods discussed
in this course. Without going into the detail of the mathematics, the singular value decom-
position (SVD) can be viewed as a “black box”. The results of the SVD can be stated in
terms of matrices or individual elements of a matrix.

Mathematical Definition

Any matrix X can be expressed as the product of three matrices U, D, and V′. The 𝑖𝑗-th
element of X, denoted as 𝑥𝑖𝑗, is expressed as:

𝑥𝑖𝑗 =
𝑟

∑
𝑘=1

𝑢𝑖𝑘𝑑𝑘𝑣𝑗𝑘

The values 𝑑𝑘 have only one subscript because the matrix D is a diagonal matrix with zeros
for all off-diagonal elements.

If X is the matrix of standardised data (e.g., Income, Number of Children, and Age), then
𝑟 = 3, and D will contain three diagonal values. These values in D are called the singular
values. Singular values are always non-negative (𝑑𝑘 ≥ 0), and we order them such that
𝑑1 ≥ 𝑑2 ≥ … ≥ 𝑑𝑟.

Dimension Reduction

The SVD is the basis for approximating multivariate data by dimension reduction. Working
with too many variables makes it difficult to discern interrelationships. We often seek a matrix
X∗ that is “simpler” than X but remains a good approximation.

15

Least Squares Approximation

We aim to find the least squares solution X∗ that minimizes the sum of squared differences
between the elements of X and X∗:

min ∑
𝑖

∑
𝑗

(𝑥𝑖𝑗 − 𝑥∗
𝑖𝑗)2

According to Huygens’ Principle, the approximation necessarily includes the centroid
(mean), so we center the data matrix before approximating. If the data is already standardised,
it is already centered.

Best 2D approximation: X∗ = ∑2
𝑘=1 𝑢𝑖𝑘𝑑𝑘𝑣𝑗𝑘 Best 1D approximation: X∗ = 𝑢𝑖1𝑑1𝑣𝑗1

R Programming Exercise

Use the interactive console below to perform the SVD on a standardized dataset.

Step 1: Create the sample data matrix X
X <- matrix(c(50, 2, 35,

20, 4, 45,
40, 3, 30,
35, 3, 32,
60, 5, 25),

nrow = 5, byrow = TRUE)
colnames(X) <- c("Income", "Children", "Age")

Step 2: Standardise the matrix
X.std <- scale(X)

Step 3: Compute SVD
res.svd <- svd(X.std)

Extract components
U <- res.svd$u
D <- diag(res.svd$d)
V <- res.svd$v

Step 4: Construct the best 2-dimensional approximation (X.star)
We use only the first two columns/elements

16

X.star <- U[, 1:2] %*% D[1:2, 1:2] %*% t(V[, 1:2])

View results
print("Standardized Matrix:")

[1] "Standardized Matrix:"

print(X.std)

Income Children Age
[1,] 0.59344243 -1.2278812 0.2151580
[2,] -1.38469899 0.5262348 1.5598952
[3,] -0.06593805 -0.3508232 -0.4572107
[4,] -0.39562828 -0.3508232 -0.1882632
[5,] 1.25282290 1.4032928 -1.1295793
attr(,"scaled:center")
Income Children Age

41.0 3.4 33.4
attr(,"scaled:scale")

Income Children Age
15.165751 1.140175 7.436397

print("2D Approximation (X.star):")

[1] "2D Approximation (X.star):"

print(X.star)

[,1] [,2] [,3]
[1,] 0.26048350 -1.2630881 -0.1244430
[2,] -1.51239121 0.5127327 1.4296557
[3,] 0.21160127 -0.3214764 -0.1741349
[4,] -0.09109489 -0.3186221 0.1223452
[5,] 1.13140134 1.3904538 -1.2534230

17

A word of caution on practical data analysis

One of the main aims of this course is to put you in a position of being able to perform the
multivariate statistical analysis of your own research projects, in whatever field this may be.
Most of the examples used in these notes are themselves real-world studies, and so you will
get some idea of some of the complexities involved in gathering and analysing data. Having
said that, there is an obvious need in an introductory course like this one to choose data sets
that work’ and that can be used to illustrate the techniques. We therefore do not discuss
many of the practical difficulties which inevitably arise when doing your own original research.
As a result when these difficulties arise when it comes to doing your own research, you may
look back on this course and think why weren’t we taught that?’ Unfortunately, the kinds of
problems that can arise are so varied and require such different solutions that it is not possible
to teach in a course such as this one. As Bartholemew et al. put it, only when one has a
clear idea of where one is going is it possible to know the important questions which arise”.
However, the following broad areas should be borne in mind whenever conducting an original
analysis.

Missing Data

Missing data can cause severe problems for many of the techniques we will consider. Most
techniques will simply drop cases which possess missing data on any of the variables to
be included in the analysis. When the number of variables is large, as is often the case
in multivariate analyses, this can result in a substantial proportion of the sample being
dropped. This proportion should always be noted early in the analysis. Another critical
question to ask iswhy is the data missing?” and ’does the missing data introduce any
bias into the results?” Often, it is the people with the most extreme views that turn up
as missing data by refusing to answer certain questions, which is clearly biasing. Possible
solutions are mean replacement or other imputation (replacement) techniques, but these
are beyond the scope of this course.

Sample Sizes

It is a general rule that the bigger the model you fit, the greater the number of cases you
need. In univariate analysis and simple hypothesis testing, the calculation ofrequired’
sample sizes is reasonably straightforward, but in multivariate analysis there are only very
rough guidelines where any exist at all. As a very rough guideline, most techniques require
at least 10 respondents per parameter estimated. That means that in order to estimate
a regression model with four independent variable, you need at least 50 respondents (not
forgetting the constant term 𝛽0, there are 5 parameters to be estimated). When sample
sizes are small, one should be very careful about drawing strong conclusions. This is a
particular problem in student research, where sample sizes are typically very small.

18

Transformations

Many statistical techniques assume that data are normally distributed. Although it is
again beyond the scope of this course, it is often possible to transform data that is not
normally distributed into something that is normally distributed by using some kind of
transforming function. Taking the logarithm of a set of numbers, for example, often works,
as does taking the square (both of these transformations work by sucking in’ the tails
of the non-normal distributions). Where transformations do not help, the analyst must
make a decision about whether the data is approximately normal’ or ‘normal enough’ to
continue, or whether it is necessary to use other methods (like non-parametric statistics,
which tend to be harder to use but do not make any distributional assumptions).

19

	Overview
	Outline of the course notes
	Data and the data matrix
	Standardisation of data
	Mathematical notation
	Introduction to Singular Value Decomposition (SVD)
	Mathematical Definition

	Dimension Reduction
	Least Squares Approximation

	R Programming Exercise
	A word of caution on practical data analysis

